News

Beautiful nanotechnology

Beautiful nanotechnology

Lately we stumbled across a blog from a nanotechnology fan, and it included some incredible images captured using an electron microscope. Scroll/swipe to your heart’s content and check out the weird and wonderful nanoscopic world. The link to the full gallery is at the bottom.

NanoOrchard – Electrochemically overgrown CuNi nanopillars. (Image courtesy of the Materials Research Society Science as Art Competition and Josep Nogues, Institut Catala de Nanociencia i Nanotecnologia (ICN2), Spain, and A. Varea, E. Pellicer, S. Suriñach, M.D. Baro, J. Sort, Univ. Autonoma de Barcelona)

NanoOrchard – Electrochemically overgrown CuNi nanopillars. (Image courtesy of the Materials Research Society Science as Art Competition and Josep Nogues, Institut Catala de Nanociencia i Nanotecnologia (ICN2), Spain, and A. Varea, E. Pellicer, S. Suriñach, M.D. Baro, J. Sort, Univ. Autonoma de Barcelona)

Piezoresponse force microscopy image of the ferroelectric domain structure of hexagonal ErMnO3. Dark and bright areas correspond to opposite out-of-plane directions of the polarization. Note the vortex-like meeting points of six domains. (Image courtesy of the Materials Research Society Science as Art Competition and Manfred Fiebig, ETH Zurich, Switzerland)

Piezoresponse force microscopy image of the ferroelectric domain structure of hexagonal ErMnO3. Dark and bright areas correspond to opposite out-of-plane directions of the polarization. Note the vortex-like meeting points of six domains. (Image courtesy of the Materials Research Society Science as Art Competition and Manfred Fiebig, ETH Zurich, Switzerland)

LadyNanoBug – This image is a scanning electron micrograph of ZnO nanorods epitaxially grown on a CuGaO2 nanoplate in aqueous solution. The high preferential nucleation and growth of ZnO on CuGaO2 is evident in this image since there is no growth on the surrounding silicon substrate. This object resembles a lady bug and has been false colored to emphasize this unique morphology. (Image courtesy of the Materials Research Society Science as Art Competition and Audrey S. Forticaux, University of Wisconsin-Madison)

LadyNanoBug – This image is a scanning electron micrograph of ZnO nanorods epitaxially grown on a CuGaO2 nanoplate in aqueous solution. The high preferential nucleation and growth of ZnO on CuGaO2 is evident in this image since there is no growth on the surrounding silicon substrate. This object resembles a lady bug and has been false colored to emphasize this unique morphology. (Image courtesy of the Materials Research Society Science as Art Competition and Audrey S. Forticaux, University of Wisconsin-Madison)

Crystal rose – Scanning electron microscopy image of a 50 micrometer high self-assembled micro-flower made from barium carbonate and silica. (Image courtesy of the Materials Research Society Science as Art Competition and Wim Noorduin, Harvard University)

Crystal rose – Scanning electron microscopy image of a 50 micrometer high self-assembled micro-flower made from barium carbonate and silica. (Image courtesy of the Materials Research Society Science as Art Competition and Wim Noorduin, Harvard University)

Scientifically, this electron microscope image depicts the emergence of silicon nano strands (green) from an indium droplet (blue) during a plasma-assisted physical vapor deposition growth process. The blue balloon is an indium droplet. The growing silicon nanostrands (which form the string) lift the balloon from a silicon wafer substrate – the nanostrand is speckled with indium droplets. Metaphorically, the image portrays a night scene lit up by glowing lights. A blue balloon dances through the night sky, followed by a glowing trail of dusty light. There is something hopeful about the one blue balloon with its speckled tail. It dances playfully and engages the viewer, flying through the sky followed by a trail of dusty light.

Scientifically, this electron microscope image depicts the emergence of silicon nano strands (green) from an indium droplet (blue) during a plasma-assisted physical vapor deposition growth process. The blue balloon is an indium droplet. The growing silicon nanostrands (which form the string) lift the balloon from a silicon wafer substrate – the nanostrand is speckled with indium droplets. Metaphorically, the image portrays a night scene lit up by glowing lights. A blue balloon dances through the night sky, followed by a glowing trail of dusty light. There is something hopeful about the one blue balloon with its speckled tail. It dances playfully and engages the viewer, flying through the sky followed by a trail of dusty light.

These are droplets of metallic indium on a silicon oxide surface. Metallic droplets are a stage in the process to grow nanowires, which scientists are studying for future generations of batteries and other technologies. The nanowires need something to “climb” on to start growing–that’s why some of the droplets appear to be covered by ice-like sheets and crystals. (The original black & white scanning electron microscopy image has color added)

These are droplets of metallic indium on a silicon oxide surface. Metallic droplets are a stage in the process to grow nanowires, which scientists are studying for future generations of batteries and other technologies. The nanowires need something to “climb” on to start growing–that’s why some of the droplets appear to be covered by ice-like sheets and crystals. (The original black & white scanning electron microscopy image has color added)

Not your average sunflower. Colorized SEM image of ZnO crystallites blooming on the surface of single crystalline hexage of gold. The gold plate is obtained through solution-based thermolysis. The ZnO is nucleated and grown through a 2-step solution synthesis. (John Joo, Harvard University; Background image of sunflowers was taken by Monica Scanlan) ©MRS

Not your average sunflower. Colorized SEM image of ZnO crystallites blooming on the surface of single crystalline hexage of gold. The gold plate is obtained through solution-based thermolysis. The ZnO is nucleated and grown through a 2-step solution synthesis. (John Joo, Harvard University; Background image of sunflowers was taken by Monica Scanlan) ©MRS

Nano flower. Nano Flower made of zinc oxide, Scanning electron microscope image of zinc oxide nanowire arrays with flower-like form. (Hyun Wook Kang)

Nano flower. Nano Flower made of zinc oxide, Scanning electron microscope image of zinc oxide nanowire arrays with flower-like form. (Hyun Wook Kang)

Nano graveyard. The “Nano Graveyard” is a thin film of tin (II) sulfide prepared by a solution method with post-annealing and was imaged using scanning electron microscopy at a low incidence angle. The width of the image covers approximately 10 microns. Part of the film has been artificially colored to represent a lumpy ground of moss or grass while the protruding crystals, resembling tombstones, and have been left unaltered. These cenotaphs commemorate the material “Gray Goo”, who, after a notorious career of public fear-mongering, has gently been laid to rest. Kindly pay your respects. (Steven Herron, Stanford University)

Nano graveyard. The “Nano Graveyard” is a thin film of tin (II) sulfide prepared by a solution method with post-annealing and was imaged using scanning electron microscopy at a low incidence angle. The width of the image covers approximately 10 microns. Part of the film has been artificially colored to represent a lumpy ground of moss or grass while the protruding crystals, resembling tombstones, and have been left unaltered. These cenotaphs commemorate the material “Gray Goo”, who, after a notorious career of public fear-mongering, has gently been laid to rest. Kindly pay your respects. (Steven Herron, Stanford University)

Nano-Witch SEM image of crystalline wurtzite zinc oxide (ZnO) nanostructure synthesized via vapor-liquid-solid (VLS) method. (Image: Wen Hsun Tu, National Taiwan University, Taipei, Taiwan)

Nano-Witch SEM image of crystalline wurtzite zinc oxide (ZnO) nanostructure synthesized via vapor-liquid-solid (VLS) method. (Image: Wen Hsun Tu, National Taiwan University, Taipei, Taiwan)

Squaring the Circle The imaged object is a single crystalline diamond grain that is anisotropically etched by hot spheres of molten nickel (red). Self-organized nickel particles are obtained by sintering a thin Ni film (100 nm) that is evaporated on a polished diamond substrate. Self-organisation and etching are conducted by the following annealing procedure: 1000°C in 500 mbar H2, 24 h. (Image: Waldemar Smirnov, Fraunhofer Institut Angewandte Festkörperphysik, Germany)

Squaring the Circle The imaged object is a single crystalline diamond grain that is anisotropically etched by hot spheres of molten nickel (red). Self-organized nickel particles are obtained by sintering a thin Ni film (100 nm) that is evaporated on a polished diamond substrate. Self-organisation and etching are conducted by the following annealing procedure: 1000°C in 500 mbar H2, 24 h. (Image: Waldemar Smirnov, Fraunhofer Institut Angewandte Festkörperphysik, Germany)

At the Crystal Frontier False color SEM image of warring CaCO3 polymorphs showing the transformation of vaterite (left) to the more stable calcite (right) on the surface of a hierarchical mineral tube grown from a gel-liquid interface. (Image courtesy of the Materials Research Society Science as Art Competition and Casper Ibsen, Aarhus University, Denmark)

At the Crystal Frontier False color SEM image of warring CaCO3 polymorphs showing the transformation of vaterite (left) to the more stable calcite (right) on the surface of a hierarchical mineral tube grown from a gel-liquid interface. (Image courtesy of the Materials Research Society Science as Art Competition and Casper Ibsen, Aarhus University, Denmark)

Horrific Hidden Teeth – FIB section of a silicon nanowires carpet. (Image courtesy of the Materials Research Society Science as Art Competition andEmanuele Enrico, INRiM, Italy)

Horrific Hidden Teeth – FIB section of a silicon nanowires carpet. (Image courtesy of the Materials Research Society Science as Art Competition andEmanuele Enrico, INRiM, Italy)

 

For the full gallery click here.

Leave a Reply

Your email address will not be published. Required fields are marked *

Subscribe before downloading