News

Graphene-based sieve turns seawater into drinking water

Graphene-based sieve turns seawater into drinking water

We found a very interesting article on BBC News titled “Graphene-based sieve turns seawater into drinking water” that we thought would be good to share with you.

A team of UK-based researchers have created a graphene-based sieve that can remove salt from seawater. This development is highly sought after as it could aid millions of people around the world who have difficult access to clean drinking water.

The graphene oxide sieve is quite promising as it could efficiently filter salts, and will be tested against existing desalination membranes.

It has been difficult to manufacture graphene-based barriers at an industrial scale.

Scientists from the University of Manchester, led by Dr Rahul Nair, published their results in the journal Nature Nanotechnology. They solved a few of the challenges by using a chemical derivative called graphene oxide.

In 2004, a University of Manchester-led team characterised and isolated graphene, comprising a single layer of carbon atoms arranged in a hexagonal lattice. Graphene has extraordinary tensile strength and electrical conductivity, making it an ideal material for future applications.

But it has been difficult to produce large quantities of single-layer graphene using existing methods, such as chemical vapour deposition (CVD). Current production routes are also quite costly.

On the other hand, said Dr Nair, “graphene oxide can be produced by simple oxidation in the lab”.

He told BBC News: “As an ink or solution, we can compose it on a substrate or porous material. Then we can use it as a membrane.”

“In terms of scalability and the cost of the material, graphene oxide has a potential advantage over single-layered graphene.”

Of the single-layer graphene he added: “To make it permeable, you need to drill small holes in the membrane. But if the hole size is larger than one nanometre, the salts go through that hole. You have to make a membrane with a very uniform less-than-one-nanometre hole size to make it useful for desalination. It is a really challenging job.”

Graphene oxide membranes have proven useful in sieving out nanoparticles, organic molecules and large salts. But now they can filter out common salts that require even tinier sieves.

Previous work had shown that graphene oxide membranes became slightly swollen when immersed in water, allowing smaller salts to flow through the pores along with water molecules.

But now, Dr Nair and colleagues have provided a solution to this problem by placing walls made of epoxy resin on both sides of the graphene oxide membrane as it prevents and stops the expansion.

By restricting the swelling this way, the scientists were able to tune the properties of the membrane, allowing through less or more common salt for example.

When common salts are dissolved in water, they always form a “shell” of water molecules around the salt molecules.

This allows the tiny capillaries of the graphene-oxide membranes to block the salt from flowing through along with the water.

“Water molecules can go through individually, but sodium chloride cannot. It always needs the help of the water molecules. The size of the shell of water around the salt is larger than the channel size, so it cannot go through,” said Dr Nair.

Water molecules also flow remarkably fast through the membrane barrier, making it ideal for use in desalination.

“When the capillary size is around one nanometre, which is very close to the size of the water molecule, those molecules form a nice interconnected arrangement like a train,” Dr Nair explained.

“That makes the movement of water faster: if you push harder on one side, the molecules all move on the other side because of the hydrogen bonds between them. You can only get that situation if the channel size is very small.”

The UN expects 14% of the world’s population to face water scarcity by 2025. “As the effects of climate change continue to reduce urban water supplies, wealthy modern countries are also investing in desalination technologies.”

The existing desalination plants around the world uses polymer-based membranes.

“This is our first demonstration that we can control the spacing [of pores in the membrane] and that we can do desalination, which was not possible before. The next step is to compare this with the state-of-the-art material available on the market,” said Dr Nair.

In a news and views article accompanying the study in Nature Nanotechnology, Ram Devanathan, from the Pacific Northwest National Laboratory in Richland, US, said more work needed to be done to produce graphene oxide membranes inexpensively at industrial scales.

He added that scientists also needed to demonstrate the durability of the membranes under prolonged contact with seawater and ensure the membrane was resistant to “fouling” by salts and biological material (which requires existing barriers to be periodically cleaned or replaced).

“The selective separation of water molecules from ions by physical restriction of interlayer spacing opens the door to the synthesis of inexpensive membranes for desalination,” wrote Dr Devanathan.

“The ultimate goal is to create a filtration device that will produce potable water from seawater or wastewater with minimal energy input.”

To read the source article, click here.

Leave a Reply

Your email address will not be published. Required fields are marked *

Subscribe before downloading